Exercise 22

A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?

Solution

Draw a schematic of the triangle formed by the rope at some time.

Note that $d r / d t$ is negative because the hypotenuse decreases as time goes on. r and x are related by the Pythagorean theorem.

$$
r^{2}=x^{2}+1^{2}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}\left(r^{2}\right) & =\frac{d}{d t}\left(x^{2}+1^{2}\right) \\
2 r \cdot \frac{d r}{d t} & =2 x \cdot \frac{d x}{d t} \\
r \frac{d r}{d t} & =x \frac{d x}{d t}
\end{aligned}
$$

Solve for $d x / d t$, the rate that the distance to the dock is increasing with respect to time.

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{r}{x} \frac{d r}{d t} \\
& =\frac{\sqrt{x^{2}+1^{2}}}{x} \frac{d r}{d t} \\
& =\frac{\sqrt{x^{2}+1}}{x}(-1)
\end{aligned}
$$

Therefore, when the boat is 8 m from the dock,

$$
\left.\frac{d x}{d t}\right|_{x=8}=\frac{\sqrt{(8)^{2}+1}}{(8)}(-1)=-\frac{\sqrt{65}}{8} \approx-1.00778 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

The boat's approaching the dock at about a meter per second when it's 8 meters away.

